The inhibition site on myelin-associated glycoprotein is within Ig-domain 5 and is distinct from the sialic acid binding site.
نویسندگان
چکیده
Myelin-associated glycoprotein (MAG) is a potent inhibitor of axonal regeneration. It contains five Ig-like domains and is a sialic binding protein. Previously, we showed that the sialic acid binding site on MAG maps to arginine 118 in Ig domain 1 (Kelm et al., 1994). However, sialic acid binding was neither necessary nor sufficient for MAG to bring about inhibition of neurite outgrowth. Consistent with this, we now map a distinct inhibition site on MAG to Ig domain 5 (Ig-5). We show that when a truncated form of MAG missing Ig domains 1 and 2 is expressed by Chinese hamster ovary (CHO) cells, it does not bind sialic acid, but still inhibits neurite outgrowth almost as effectively as full-length MAG. To determine whether the inhibition site mapped to Ig-3, Ig-4, or Ig-5, we made chimeric molecules of various combinations of these three MAG Ig domains fused to Ig domains from another Ig family member, sialoadhesin (Sn), which also binds to sialic acid in the same linkage as MAG. The MAG-Sn molecules were expressed in CHO cells and all contained five Ig domains and were able to bind sialic acid. However, only the chimeric molecules containing MAG Ig-5 inhibited neurite outgrowth. Furthermore, peptides corresponding to sequences in MAG Ig-5, but not Ig-4 or Sn Ig-5, are able to block inhibition of neurite outgrowth by both wild-type MAG and CNS myelin. We conclude that the inhibition site on MAG is carried by Ig domain 5 and that this site is distinct from the sialic-acid binding site.
منابع مشابه
Myelin-associated Glycoprotein Interacts with Neurons via a Sialic Acid Binding Site at ARG118 and a Distinct Neurite Inhibition Site
Inhibitory components in myelin are largely responsible for the lack of regeneration in the mammalian CNS. Myelin-associated glycoprotein (MAG), a sialic acid binding protein and a component of myelin, is a potent inhibitor of neurite outgrowth from a variety of neurons both in vitro and in vivo. Here, we show that MAG's sialic acid binding site is distinct from its neurite inhibitory activity....
متن کاملSialic Acid Is Required for Neuronal Inhibition by Soluble MAG but not for Membrane Bound MAG
Myelin-Associated Glycoprotein (MAG), a major inhibitor of axonal growth, is a member of the immunoglobulin (Ig) super-family. Importantly, MAG (also known as Siglec-4) is a member of the Siglec family of proteins (sialic acid-binding, immunoglobulin-like lectins), MAG binds to complex gangliosides, specifically GD1a and/or GT1b. Therefore, it has been proposed as neuronal receptors for MAG inh...
متن کاملInhibitory Activity of Myelin-Associated Glycoprotein on Sensory Neurons Is Largely Independent of NgR1 and NgR2 and Resides within Ig-Like Domains 4 and 5
Myelin-associated glycoprotein (MAG) is a sialic acid binding Ig-like lectin (Siglec) which has been characterized as potent myelin-derived inhibitor of neurite outgrowth. Two members of the Nogo-receptor (NgR) family, NgR1 and NgR2, have been identified as neuronal binding proteins of MAG. In addition, gangliosides have been proposed to bind to and confer the inhibitory activity of MAG on neur...
متن کاملSiglecs in the immune system.
Siglecs (sialic acid binding Ig-like lectins) are I-type (Ig-type) lectins characterized by an N-terminal V-set Ig domain that mediates sialic acid binding, followed by varying numbers of C2-set Ig domains (Fig. 1). The initial discovery of this lectin family came about through independent studies on sialoadhesin (Siglec-1/CD169), a macrophage lectin-like adhesion molecule, and CD22 (Siglec-2),...
متن کاملMolecular basis of the interactions of the Nogo-66 receptor and its homolog NgR2 with myelin-associated glycoprotein: development of NgROMNI-Fc, a novel antagonist of CNS myelin inhibition.
Myelin-associated glycoprotein (MAG) is a sialic acid-binding Ig-family lectin that functions in neuronal growth inhibition and stabilization of axon-glia interactions. The ectodomain of MAG is comprised of five Ig-like domains and uses neuronal cell-type-specific mechanisms to signal growth inhibition. We show that the first three Ig-like domains of MAG bind with high affinity and in a sialic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 27 34 شماره
صفحات -
تاریخ انتشار 2007